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 Introduction 

 Brain anatomical changes are common in older adults. 
The most common forms of adverse brain anatomical 
changes are focal and diffuse atrophy, white matter le-
sions, cortical and subcortical infarcts, and microinfarcts 
 [1–4] . Of these, white matter lesions are more frequently 
reported in patients with Alzheimer’s disease (AD) and 
mild cognitive impairment (MCI). Even so, pathological 
changes are very widespread and their possible signifi-
cance needs to be considered. For example, in a large 
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 Abstract 

  Background:  This study investigates how T 1 -weighted MRI 

can be used to evaluate brain anatomical changes. We inves-

tigated these changes in Alzheimer’s disease (AD) and nor-

mal aging.  Methods:  A semiquantitative brain atrophy and 

lesion index (BALI) was constructed by adapting existing vi-

sual rating scales and validated in 3 datasets.  Results:  The 

T 1 - and T 2 -weighted-imaging-based scores were highly cor-

related. They were both closely associated with age and with 

cognitive test scores.  Conclusion:  The T 1 -based BALI helps 

describe brain structural variability in AD, mild cognitive im-

pairment and normal aging.  Copyright © 2010 S. Karger AG, Basel 
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community-based study, about 6% of people aged 45–59 
years showed no white matter lesions; this decreased to 
2% of people aged 75 years and older  [5] . 

  To evaluate brain lesions, several MRI visual rating 
scales have been used  [6–10] . The rating scales vary by 
locations under study, by the grading system used, by the 
size of validation samples, and by imaging modality. 
Most visual rating scales focus on discrete lesions in lo-
calized structures and require proton density imaging, 
T 2 -weighted imaging (T2WI) or fluid-attenuated inver-
sion recovery imaging  [11] . Although brain lesion rating 
scales go back to the days of CT, rating scales for high-
field MRI (i.e. 3-tesla or higher), which are increasingly 
being used for functional MRI (fMRI), have yet to be de-
veloped.

  Brain lesions have been linked with cognitive deficits 
in both normal aging and AD dementia  [12–16] . Such an-
atomical changes make reliable inference of brain func-
tion difficult. In most fMRI experiments, high-resolu-
tion T 1 -weighted imaging (T1WI) is used for anatomical 
images, thus it would be helpful to understand to what 
extent high-resolution T1WI may be used to investigate 
brain anatomical changes and their effects on cognition. 
Using a rating scale to assess structural changes on T1WI 
and summarize multiple deficits could provide a stan-
dard way to describe brain anatomy for functional neu-
roimaging. Although neuroanatomical abnormalities 
might be heterogeneous, each can affect brain function, 
such that their combined effects might be significant. 

  The purpose of this paper is to investigate the relation-
ship between T1WI- and T2WI-based evaluations of 
brain structural changes in healthy older adults and peo-
ple with AD and MCI. In particular, we examined wheth-
er T1WI can be used to describe whole brain changes as 

well as the relationship between brain anatomical chang-
es and cognition. For these purposes, a semiquantitative 
brain atrophy and lesion index (BALI) was developed, by 
adapting existing visual rating scales. The T1WI-based 
BALI score was compared with the T2WI-based score to 
assess reliability and for content, construct and predictive 
validation. To evaluate the general utility of the BALI, 
three independent structural MRI datasets were used. 

  Materials and Methods 

 Data 
 Data were obtained from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI; dataset 1) and from 4-tesla (dataset 2) and 
3-tesla (dataset 3) MRI studies. Each study received local research 
ethics board approval and informed consent was obtained from 
each participant. 

   Dataset 1.  The ADNI was launched in 2003 as a multiyear, 
public-private partnership to combine neuroimaging with other 
biological markers and with neuropsychological and clinical as-
sessments to measure the progression of MCI and early AD  [17] . 
ADNI data were downloaded with permission. The analysis was 
based on 35 AD patients, 68 MCI patients and 50 healthy controls 
( table 1 ). All had T1WI (3-D magnetization-prepared rapid gradi-
ent echo sequence; 1.2 mm thickness) and T2WI (2-D axial, fast 
spin echo; 3 mm thickness) at 3-tesla  [18] , as well as cognitive tests 
(e.g. MMSE, Mini-Mental State Examination).

   Dataset 2.  Forty-four subjects (14 early AD, 30 age-matched 
healthy controls) were recruited from 2006 to 2010. The T1WI 
data were acquired at 4-tesla (Varian-Oxford; 35 mT/m gradient) 
using a 3-D magnetization-prepared fast low-angle shot sequence 
(TR/TE = 10.1/5 ms; slice thickness = 1.2 mm). Cognitive status 
of the subjects was assessed using the Modified Mini-Mental 
Scale ( table 1 ).

   Dataset 3.  Ninety-six healthy older adults were recruited in 
2009. The 3-tesla device used a spin echo sequence for T1WI (TR/
TE = 1,776/25.9 ms) and fast spin echo for T2WI (TR/TE = 
4,300/123 ms). The slice thickness was 6 mm for both scans. An 

Table 1. B aseline demographics of the study sample

Dataset

1 2 3 

AD MCI HC AD HC HC 

Number 35 68 50 14 30 96
Age, years 75.188.9 75.287.5 75.887.5 76.4810.0 73.786.1 72.987.4
Female, % 62.9 35.3 66.0 42.9 63.3 50.0
MMSE (of 30) 22.183.6 25.783.0 28.881.2 76.587.4 96.784.3 26.484.1*

or 3MS (of 100) score of 30 of 30 of 30 of 100 of 100 of 30

Age  values are means 8 SD. HC = Healthy controls; MMSE = Mini-Mental State Examination; 3MS = Mod-
ified Mini-Mental Scale. * For randomly selected third of the study sample.



 Brain Lesions in AD and Aging Dement Geriatr Cogn Disord 2010;30:121–130 123

MMSE score was available for a randomly selected third of the 
sample ( table 1 ). 

  Construction of the BALI 
 Seven categories were included in the BALI, which covered 

various common types of changes observed in the aging brain, in 
both supratentorial and infratentorial regions ( table 2 ). The su-
pratentorial lesions included gray matter lesions in the cerebral 
cortices and small vessels (that can be readily seen using 3-tesla 
and higher-field MRI) in the adjacent subcortical regions (GM-
SV), white matter lesions that included periventricular lesions 
(PV) and deep white matter lesions (DWM) and basal ganglia le-
sions (BG; consisting of the caudate, putamen, globus pallidus 
nuclei, thalamus and internal capsule). The infratentorial lesions 
(IT) category assessed damage to the cerebellum and the brain 
stem. Global atrophy (GA) was designated as a component of the 
BALI to assess the shrinkage of the whole brain and the enlarge-
ment of the ventricles and subarachnoid spaces. An ‘other lesions’ 
category was included to cover neoplasm, trauma and deforma-
tion, among others. 

  A value between 0 and 3 was assigned to each category based 
on severity, with higher score meaning greater severity. Alerted to 
possible ceiling effects within the DWM category, where initially 
about a quarter of subjects had maximum scores (i.e. DWM sub-
score = 3), we added 2 grades (4 and 5) to the DWM category 
( table 2 ). The images were assessed independently by 2 radiolo-
gists trained to use this method and blind to the demographic and 
cognitive status of the participants. To minimize recall bias, the 
T1WI and T2WI images were assessed separately on different 
days for randomly selected samples. Important lesions within a 

given category were defined as a subscore of  6 2.  Figure 1  shows 
representative images demonstrating lesions of various subcate-
gories and the corresponding lesion scores. 

  Statistical Analyses 
 The interrater agreement rate was evaluated using the inter-

class correlation coefficient (ICC) on a random sample of 25% of 
the subjects in each dataset, with raters as independent variables 
 [19] . Group mean differences between T1WI- and T2WI-based 
BALI total scores and subscores were examined using the pair-
wise t test. Comparisons of means between diagnoses and be-
tween imaging types used analysis of variance (ANOVA) and 
two-way ANOVA. Tukey’s multiple comparison tests were per-
formed accordingly. Interrelations between variables were exam-
ined using correlation and regression analyses. Sensitivity and 
specificity analyses were performed and receiver operating char-
acteristic (ROC) curves were used to evaluate BALI scores in iden-
tifying individuals with AD. Data were analyzed using SPSS 15.0 
software and codes developed in Matlab version 2007. The level 
of significance was set at p  !  0.05 (two-tailed). 

  Results 

 The interrater agreement analysis showed high reli-
ability (ICC = 0.89, 95% CI 0.81–0.93 for the T1WI-based 
score; ICC = 0.86, 95% CI 0.74–0.92 for the T2WI-based 
score).

Table 2. C ategorizing and grading criteria of the BALI

Categories Criteria

GM-SV (gray
matter lesions
and small vessels)

0 = absence; 1 = punctuate foci in gray matter or multiple small vessels in subcor tical area; 
2 = beginning confluence of foci in gray matter or diffuse small vessels in subcortical area; 
3 = large confluent lesions in gray matter (rare, evidence for stroke-related malacia foci)

PV (periven-
tricular lesions)

0 = absence; 1 = ‘caps’ or pencil-thin lining; 2 = smooth ‘halo’; 3 = irregular periventricular 
abnormal signal intensities extending into the deep white matter

DWM (deep
white matter
lesions)

0 = absence; 1 = punctuate foci; 2 = beginning of confluence foci; 3 = large confluent areas; 
4 = large confluent white matter areas involving all cerebral lobes; 5 = complete confluent 
white matter disease

BG (basal ganglia
and surrounding
area lesions)

0 = absence; 1 = 1 focal lesion; 2 = >1 focal lesion; 3 = large confluent lesions

IT (infratentorial
region lesions)

0 = absence; 1 = 1 focal lesion; 2 = >1 focal lesion; 3 = large confluent lesions

GA (global
atrophy)

0 = no obvious atrophy; 1 = mild atrophy; 2 = moderate atrophy; 3 = severe atrophy

Other lesions 0 = no other kind of disease; 1 = any 1 kind of brain neoplasm, deformation or trauma;
2 = any 2 kinds of brain neoplasm, deformation or trauma; 3 = simultaneous presence
of brain neoplasm, deformation and trauma
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  Brain lesions were common in each dataset ( table 3 ). 
Most subjects had a moderate BALI score, and none was 
free of lesions (datasets 1–3: minimum = 5, 6, 3; maxi-
mum = 16, 16, 17; median and mean = 10, 10, 9). Brain 
lesions were seldom restricted to a single category. Across 
datasets, nearly 85% of the participants showed various 
grades of lesions involving multiple categories (i.e. BG, 
DWM, PV, IT and GM-SV). Except for the ‘other lesion’ 
category, important lesions (i.e. subscore in a category of 
 6 2) were observed for each category. The highest sub-
score was in the DWM category, with 20% of the subjects 
having a DWM subscore of 3 and 9% of 4, but none of 5. 
Higher BALI total scores were revealed by T2WI than by 
T1WI for the datasets (two-way ANOVA: n = 249, F = 
7.65, p = 0.009) ( table 3 ), which was most obvious in PV 
and DWM. Regardless of imaging method or dataset, the 
BALI score varied significantly among different diagno-
ses (two-way ANOVA: F = 32.03, p  !  0.001), with AD or 
MCI patients showing a higher BALI score than healthy 
controls (p = 0.016) ( table 3 ). 

  Despite the difference in mean values, T1WI- and 
T2WI-based BALI scores were highly correlated with a 
linear fit ( fig. 2 ). Significant correlations between T1WI- 
and T2WI-based scores were also observed for each diag-
nostic group in each dataset (r = 0.87–0.93; p  !  0.001). The 
T1WI-based subscores were also highly correlated with 
T2WI-based ones (r = 0.64–0.94; p  !  0.001). 

  A lower BALI total score (i.e. less lesions), either T1WI 
or T2WI based, was associated with a higher cognitive 
test result (i.e. better performance; r = 0.21–0.29, p  !  0.05 
for T1WI-based score; r = 0.26–0.29, p  !  0.01 for T2WI-
based score) ( fig. 3 a, b). Cognitive test scores were consis-
tently related with brain atrophy, but not significantly re-
lated with brain lesions in most individual categories, ex-
cept for BG in dataset 1 ( fig. 3 a, b). 

  Both the T1WI- and T2WI-based scores increased 
with age ( fig. 3 c, d). A strong correlation was observed for 
most lesion categories versus age. The slopes of the linear 
equation describing changes in T1WI- and T2WI-based 
BALI scores with age did not differ, although the inter-
cept for the T2WI-based score was slightly higher ( fig. 4 ). 

a b c d

e f g h

  Fig. 1.  Representative images and the corresponding lesion scores 
on T1WI of different subjects.  a–d  Lesions in subcategories of BG 
( a ), IT ( b ), PV ( c ) and GM-SV ( d ). Confluent hypointensities (ar-
rows) are seen in the bilateral basal ganglia areas ( a ; BG = 3), pons 

( b ; IT = 3), periventricular areas ( c ; PV = 3) and small vessels dif-
fused in subcortical areas ( d ; GM-SV = 2).  e–h  Lesions in DWM 
subcategory. Arrows: hypointensities. Corresponding lesion 
scores: 1 ( e ), 2 ( f ), 3 ( g ), 4 ( h ).  
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Table 3. T otal and categorical scores of BALI

D ataset

1 2 3

AD
(n = 35)

MCI
(n = 68)

HC
(n = 50)

AD
(n = 14)

HC
(n = 30)

HC
(n = 96)

T1WI T2WI T1WI T2WI T1WI T2WI T1WI T1WI T1WI T2WI

Total score
Min, max 5, 16 6, 16 5, 16 5, 16 6, 15 5, 15 6, 16 6, 15 3, 17 5, 17
Median 11 11 11 11 10 10 11 9 9 9
Mean 8 SD 11.083.0 11.582.8 10.882.7 11.382.3 9.982.4 10.082.4 11.783.3 9.682.6 8.283.5 9.683.1

Category score
GM-SV (of 3) 1.080.5 0.980.5 1.180.5 1.180.5 1.180.4 1.180.4 0.980.5 0.880.6 0.680.7 0.780.7
PV (of 3) 1.980.8 2.180.7 1.880.8 2.080.7 1.680.7 1.780.7 2.180.7 1.880.7 1.980.8 2.380.6
DWM (of 5) 2.181.1 2.380.9 2.181.0 2.480.8 1.980.8 2.180.7 1.981.2 1.880.8 1.781.2 2.381.0
BG (of 3) 2.080.3 2.180.4 2.180.4 2.080.4 2.180.3 2.180.5 2.280.8 2.080.7 1.780.8 1.880.8
IT (of 3) 2.180.7 2.180.7 1.980.5 2.080.6 2.180.5 2.080.7 1.980.6 1.580.9 0.780.9 0.980.9
GA (of 3) 1.980.9 1.980.9 1.780.9 1.780.9 1.180.8 1.180.8 2.480.7 1.680.8 1.580.9 1.580.9
Other lesions

(of 3) 0.180.1 0.180.1 0.180.1 0.180.1 0 0 0.280.4 0.080.2 080.1 080.1

Scores denote means 8 SD. HC = Healthy controls.
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  Fig. 2.  Interrelations between T1WI- and 
T2WI-based BALI. Solid line: linear fit y = 
a + bx, where a = 3.093, b = 0.797, n = 249, 
r = 0.904 (95% CI: 0.879–0.925) and p  !  
0.001. Dotted diagonal line: T1WI-based 
scores = T2WI-based scores.  
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When people of different diagnostic groups were consid-
ered separately, the significant correlation between age 
and the BALI scores still held. The BALI score was high-
er in men than in women (10.0  8  3.4 vs. 9.0  8  3.7; F = 
7.06; p = 0.009).

  T1WI- and T2WI-based BALI scores showed compa-
rable accuracy at classifying people with AD at the indi-
vidual level. At its midpoint (i.e.  ̂  10 vs.  1 10), the BALI 
score sensitively predicted 17–20% more AD cases, with 
a sensitivity of 63–64%, whereas it predicted 10–12% few-
er healthy controls, with a specificity of 62–73% ( table 4 ). 
The area under the curve (AUC) ranged between 0.67 and 
0.70 ( fig. 5 ).

  Discussion 

 This is the first attempt to study the utility of a T1WI-
based index of whole brain structural changes. Our data 
show that the BALI rating can be made on either T1WI 
or T2WI, thereby offering the possibility of evaluating 
brain anatomical changes even when T2WI and/or pro-
ton density imaging are not accessible. The data also sup-
port the hypothesis that the summed effect of lesions is 
more important than individual lesions considered in 
isolation. The BALI total score was more highly corre-
lated with age and cognitive performance than were in-
dividual lesion scores. The BALI was also sensitive in de-
tecting group differences in brain damage (i.e. the score 
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  Fig. 3.  BALI in relation to MMSE ( a ,  b ) and to age ( c ,  d ) based on 
T1WI (white bars) and T2WI (gray bars) in datasets 1 ( a ,  c ) and 3 
( b ,  d ). Data presented are Pearson correlations for the total score 
and scores for various subcategories. Dotted lines: correlations 

reached the level of significance at p  !  0.05. Dashed lines: corre-
lations reached the level of significance at p  !  0.01.  a ,  b  As the 
MMSE score was negatively correlated with the lesion scores, the 
correlations were multiplied by –1.  
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  Fig. 4.  BALI as a function of age. Correla-
tion between age and T1WI-based score 
( a ), and T2WI-based score ( b ). Solid line: 
linear fit (y = a + bx) for all subjects, re-
gardless of dataset – for the T1WI-based 
score: a = –7.750, b = 0.235, n = 293, r = 
0.535 (95% CI: 0.482–0.643), p              !  0.001;
for the T2WI-based score: a = –3.884,
b = 0.192, n = 249, r = 0.493 (95% CI: 0.393–
0.582), p  !  0.001.     
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was higher in MCI and AD patients than in healthy con-
trols). This result is consistent with both clinical experi-
ence and the literature  [7, 14, 20] . The BALI identified 
individuals with AD versus healthy controls moderately 
well. While preliminary, these results suggest that the 
BALI may provide an alternative method of identifying 
brain structural changes in AD. Generalizability of the 
BALI was tested using three independent datasets, with 
differences in participants, sample sizes and imaging
acquisition methods. Although there were differences 
across various analyses, the main outcomes and the pat-
tern of results were comparable. 

  Our findings must be interpreted with caution. As a 
visual rating scale, the BALI approach has the inherent 
lack of a more precise evaluation that requires quantita-
tive measurements. As a quantitative analysis often in-
volves time-consuming manual tracing and intensive ex-
pert input, in both research and clinical settings, a prag-
matic scale can be quite favorable and useful. Further, the 
high interrater reliability indicates that different readers 
who have had satisfactory training in this method can 
rate the scans with some consistency. 

  While the T1WI- and T2WI-based BALI scores were 
highly correlated and showed similar relationships with 
age and cognition, they did demonstrate certain differ-
ences, especially in the PV and DWM categories. This 
finding is not surprising as subtle white matter damage 
may only appear as slightly increased T2WI signal inten-
sities, and these might not be detected by T1WI. For this 
reason, evaluating subtle white matter lesions solely by 
T1WI may result in a lower score compared to using 
T2WI. Even so, the spatial resolution of T1WI in the 
ADNI dataset (and in most fMRI datasets) was higher 
than that of T2WI and sometimes revealed more detailed 
lesion features. Therefore, in a portion of the subjects, the 
T1WI-based scores were even higher than the T2WI-
based ones. While a higher resolution of T1WI may serve 
as a tradeoff for a lower signal contrast, T2WI is more 
sensitive in detecting white matter lesions. 

  Currently, the BALI approach does not give special 
consideration to medial temporal lobe atrophy. It is 
known that such atrophy can serve as a sensitive marker 
for AD, which may be used to distinguish normal aging 
from AD dementia  [21–23] . Due to its high diagnostic 
sensitivity, especially when lateralization is taken into ac-
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  Fig. 5.  ROC curves for identifying subjects with AD. Solid line: 
T1WI-based BALI in dataset 1 (AUC = 0.70; 95% CI: 0.57–0.83). 
Dashed line: T2WI-based BALI in dataset 1 (AUC = 0.67; 95% CI: 
0.56–0.79). Dotted line: T1WI-based BALI in dataset 2 (AUC = 
0.69; 95% CI: 0.52–0.86).                         

Table 4. A ccuracy of classification of BALI at its midpoint value 
(n)

Predicted group A ctual group
[classification type]

Total

co ntrol AD

Control
Data-1 – T1WI 31 (62) [TN] 13 (37) [FN] 44 (88)
Data-1 – T2WI 31 (62) [TN] 13 (37) [FN] 44 (88)
Data-2 – T1WI 22 (73) [TN] 5 (36) [FN] 27 (90)

AD
Data-1 – T1WI 19 (38) [FP] 22 (63) [TP] 41 (117)
Data-1 – T2WI 19 (38) [FP] 22 (63) [TP] 41 (117)
Data-2 – T1WI 8 (27) [FP] 9 (64) [TP] 17 (121)

Total
Data-1 – T1WI 50 35 85
Data-1 – T2WI 50 35 85
Data-2 – T1WI 30 14 44

Val ues in parentheses denote percentages (actual group col-
umns) or specificity and sensitivity (total column). Data-1/2 = Da-
taset 1/2; TN = true negative; FN = false negative; TP = true posi-
tive; FP = false positive.
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count, medial temporal lobe atrophy is better evaluated 
using a more detailed scoring; one approach may even 
utilize morphovolumetric measuring of the substruc-
tures  [22, 24–26] . It has been suggested that the rating of 
medial temporal atrophy can be applied in association 
with other important brain lesions  [27, 28] . Previous re-
search has shown that focal atrophy is highly correlated 
with diffuse atrophy in AD  [24, 29] , so how this would 
add to the BALI is not yet clear. 

  Further research is needed (1) to investigate the utility 
of BALI in evaluating longitudinal changes of brain le-
sions, (2) to explore the possibility of weighting the items 
that make up the BALI, (3) to use the BALI with clinical 
assessments and neuropsychological tests for improved 
diagnosis and/or predictive accuracy, and (4) to help in-
terpret brain functional changes. A better understanding 
of the relationship between lesion types, and the contri-
butions of lesion volume and localization to their effect 
on function are especially of interest in future studies. For 
example, the small vessel disease has begun to draw sig-
nificant research attention in recent years  [2, 30, 31] , and 
while it has been included in the BALI construction, its 
particular link to lesion burden and/or atrophy warrants 
further investigation. 

  Conclusion 

 The semiquantitative BALI offers an alternative meth-
od of evaluating structural deficits in the AD and aging 
brain. The BALI showed consistent properties across dif-
ferent datasets in its content, construct and predictive va-
lidity. T1WI- and T2WI-based assessments were highly 
correlated, even though greater sensitivity of T2WI to 
white matter lesions resulted in higher values for that 
measure. The T1WI-based score can aid in understand-

ing lesion burden for both functional studies and clinical 
evaluation, which makes T1WI-based brain lesion evalu-
ation an interesting and potentially promising concept.
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